66 resultados para Arabidopsis

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we identify the Arabidopsis thaliana ortholog of the mammalian DEAD box helicase, eIF4A-III, the putative anchor protein of exon junction complex (EJC) on mRNA. Arabidopsis eIF4A-III interacts with an ortholog of the core EJC component, ALY/Ref, and colocalizes with other EJC components, such as Mago, Y14, and RNPS1, suggesting a similar function in EJC assembly to animal eIF4A-III. A green fluorescent protein (GFP)-eIF4A-III fusion protein showed localization to several subnuclear domains: to the nucleoplasm during normal growth and to the nucleolus and splicing speckles in response to hypoxia. Treatment with the respiratory inhibitor sodium azide produced an identical response to the hypoxia stress. Treatment with the proteasome inhibitor MG132 led to accumulation of GFP-eIF4A-III mainly in the nucleolus, suggesting that transition of eIF4A-III between subnuclear domains and/or accumulation in nuclear speckles is controlled by proteolysis-labile factors. As revealed by fluorescence recovery after photobleaching analysis, the nucleoplasmic fraction was highly mobile, while the speckles were the least mobile fractions, and the nucleolar fraction had an intermediate mobility. Sequestration of eIF4A-III into nuclear pools with different mobility is likely to reflect the transcriptional and mRNA processing state of the cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AtTRB1, 2 and 3 are members of the SMH (single Myb histone) protein family, which comprises double-stranded DNA-binding proteins that are specific to higher plants. They are structurally conserved, containing a Myb domain at the N-terminus, a central H1/H5-like domain and a C-terminally located coiled-coil domain. AtTRB1, 2 and 3 interact through their Myb domain specifically with telomeric double-stranded DNA in vitro, while the central H1/H5-like domain interacts non-specifically with DNA sequences and mediates protein–protein interactions. Here we show that AtTRB1, 2 and 3 preferentially localize to the nucleus and nucleolus during interphase. Both the central H1/H5-like domain and the Myb domain from AtTRB1 can direct a GFP fusion protein to the nucleus and nucleolus. AtTRB1–GFP localization is cell cycle-regulated, as the level of nuclear-associated GFP diminishes during mitotic entry and GFP progressively re-associates with chromatin during anaphase/telophase. Using fluorescence recovery after photobleaching and fluorescence loss in photobleaching, we determined the dynamics of AtTRB1 interactions in vivo. The results reveal that AtTRB1 interaction with chromatin is regulated at two levels at least, one of which is coupled with cell-cycle progression, with the other involving rapid exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eukaryotic nucleolus is multifunctional and involved in the metabolism and assembly of many different RNAs and ribonucleoprotein particles as well as in cellular functions, such as cell division and transcriptional silencing in plants. We previously showed that Arabidopsis thaliana exon junction complex proteins associate with the nucleolus, suggesting a role for the nucleolus in mRNA production. Here, we report that the plant nucleolus contains mRNAs, including fully spliced, aberrantly spliced, and single exon gene transcripts. Aberrant mRNAs are much more abundant in nucleolar fractions, while fully spliced products are more abundant in nucleoplasmic fractions. The majority of the aberrant transcripts contain premature termination codons and have characteristics of nonsense-mediated decay (NMD) substrates. A direct link between NMD and the nucleolus is shown by increased levels of the same aberrant transcripts in both the nucleolus and in Up-frameshift (upf) mutants impaired in NMD. In addition, the NMD factors UPF3 and UPF2 localize to the nucleolus, suggesting that the Arabidopsis nucleolus is therefore involved in identifying aberrant mRNAs and NMD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs whose main function in eukaryotes is to guide the modification of nucleotides in ribosomal and spliceosomal small nuclear RNAs, respectively. Full-length sequences of Arabidopsis snoRNAs and scaRNAs have been obtained from cDNA libraries of capped and uncapped small RNAs using RNA from isolated nucleoli from Arabidopsis cell cultures. We have identified 31 novel snoRNA genes (9 box C/D and 22 box H/ACA) and 15 new variants of previously described snoRNAs. Three related capped snoRNAs with a distinct gene organization and structure were identified as orthologues of animal U13snoRNAs. In addition, eight of the novel genes had no complementarity to rRNAs or snRNAs and are therefore putative orphan snoRNAs potentially reflecting wider functions for these RNAs. The nucleolar localization of a number of the snoRNAs and the localization to nuclear bodies of two putative scaRNAs was confirmed by in situ hybridization. The majority of the novel snoRNA genes were found in new gene clusters or as part of previously described clusters. These results expand the repertoire of Arabidopsis snoRNAs to 188 snoRNA genes with 294 gene variants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant secondary metabolites glucosinolates (GSL) have important functions in plant resistance to herbivores and pathogens. We identified all major GSL that are accumulated in S-cells in Arabidopsis by MALDI-TOF MS, and estimated by LC-MS that the total GSL concentration in these cells is above 130 mM. The precise locations of the S-cells outside phloem bundles in rosette and cauline leaves and in flower stalks were visualised using sulphur mapping by cryo-SEM/EDX. S-cells contain up to 40% of total sulphur in flower stalk tissues. S-cells in emerging flower stalks and developing leaf tissues show typical signs of Programmed Cell Death (PCD) or apoptosis, such as chromatin condensation in the nucleus and blebbing of the membranes. TUNEL staining for DNA double strand breaks confirmed PCD in S-cells in postmeristematic tissues in the flower stalk as well as in the leaf. Our results show that S-cells in postmeristematic tissues proceed to an extreme degree of metabolic specialisation besides PCD. Accumulation and maintenance of a high concentration of GSL in these cells are accompanied by degradation of a number of cell organelles. The substantial changes in the cell composition during S-cell differentiation indicate the importance of this particular GSL-based phloem defence system. The specific anatomy of the S-cells and ability to accumulate specialised secondary metabolites is similar to that of the non-articulated laticifer cells in latex plants and thus indicates a common evolutionary origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a general method for multiplexed quantitative proteomics using differential metabolic stable isotope labeling and mass spectrometry. The method was successfully used to study the dynamics of heat-shock response in Arabidopsis thaliana. A number of known heat-shock proteins were confirmed, and some proteins not previously associated with heat shock were discovered. The method is applicable in stable isotope labeling and allows for high degrees of multiplexing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful pest management is often hindered by the inherent complexity of the interactions of a pest with its environment. The use of genetically characterized model plants can allow investigation of chosen aspects of these interactions by limiting the number of variables during experimentation. However, it is important to study the generic nature of these model systems if the data generated are to be assessed in a wider context, for instance, with those systems of commercial significance. This study assesses the suitability of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) as a model host plant to investigate plant-herbivore-natural enemy interactions, with Plutella xylostella (L.) (Lepidoptera: Plutellidae), the diamondback moth, and Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae), a parasitoid of P. xylostella. The growth and development of P. xylostella and C. plutellae on an A. thaliana host plant (Columbia type) were compared to that on Brassica rapa var. pekinensis (L.) (Brassicaceae), a host crop that is widely cultivated and also commonly used as a laboratory host for P. xylostella rearing. The second part of the study investigated the potential effect of the different A. thaliana background lines, Columbia and Landsberg (used in wider scientific studies), on growth and development of P. xylostella and C. plutellae. Plutella xylostella life history parameters were found generally to be similar between the host plants investigated. However, C. plutellae were more affected by the differences in host plant. Fewer adult parasitoids resulted from development on A. thaliana compared to B. rapa, and those that did emerge were significantly smaller. Adult male C. plutellae developing on Columbia were also significantly smaller than those on Landsberg A. thaliana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Senescence of plant organs is a genetically controlled process that regulates cell death to facilitate nutrient recovery and recycling, and frequently precedes, or is concomitant with, ripening of reproductive structures. In Arabidopsis thaliana, the seeds are contained within a silique, which is itself a photosynthetic organ in the early stages of development and undergoes a programme of senescence prior to dehiscence. A transcriptional analysis of the silique wall was undertaken to identify changes in gene expression during senescence and to correlate these events with ultrastructural changes. The study revealed that the most highly up-regulated genes in senescing silique wall tissues encoded seed storage proteins, and the significance of this finding is discussed. Global transcription profiles of senescing siliques were compared with those from senescing Arabidopsis leaf or petal tissues using microarray datasets and metabolic pathway analysis software (MapMan). In all three tissues, members of NAC and WRKY transcription factor families were up-regulated, but components of the shikimate and cell-wall biosynthetic pathways were down-regulated during senescence. Expression of genes encoding ethylene biosynthesis and action showed more similarity between senescing siliques and petals than between senescing siliques and leaves. Genes involved in autophagy were highly expressed in the late stages of death of all plant tissues studied, but not always during the preceding remobilization phase of senescence. Analyses showed that, during senescence, silique wall tissues exhibited more transcriptional features in common with petals than with leaves. The shared and distinct regulatory events associated with senescence in the three organs are evaluated and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fast neutron-mutagenized population of Arabidopsis ( Arabidopsis thaliana) Columbia-0 wild-type plants was screened for floral phenotypes and a novel mutant, termed hawaiian skirt ( hws), was identified that failed to shed its reproductive organs. The mutation is the consequence of a 28 bp deletion that introduces a premature amber termination codon into the open reading frame of a putative F-box protein ( At3g61590). The most striking anatomical characteristic of hws plants is seen in flowers where individual sepals are fused along the lower part of their margins. Crossing of the abscission marker, Pro(PGAZAT):beta-glucuronidase, into the mutant reveals that while floral organs are retained it is not the consequence of a failure of abscission zone cells to differentiate. Anatomical analysis indicates that the fusion of sepal margins precludes shedding even though abscission, albeit delayed, does occur. Spatial and temporal characterization, using Pro(HWS):beta-glucuronidase or Pro(HWS):green fluorescent protein fusions, has identified HWS expression to be restricted to the stele and lateral root cap, cotyledonary margins, tip of the stigma, pollen, abscission zones, and developing seeds. Comparative phenotypic analyses performed on the hws mutant, Columbia-0 wild type, and Pro(35S):HWS ectopically expressing lines has revealed that loss of HWS results in greater growth of both aerial and below-ground organs while overexpressing the gene brings about a converse effect. These observations are consistent with HWS playing an important role in regulating plant growth and development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-cell analysis is essential for understanding the processes of cell differentiation and metabolic specialisation in rare cell types. The amount of single proteins in single cells can be as low as one copy per cell and is for most proteins in the attomole range or below; usually considered as insufficient for proteomic analysis. The development of modern mass spectrometers possessing increased sensitivity and mass accuracy in combination with nano-LC-MS/MS now enables the analysis of single-cell contents. In Arabidopsis thaliana, we have successfully identified nine unique proteins in a single-cell sample and 56 proteins from a pool of 15 single-cell samples from glucosinolate-rich S-cells by nanoLC-MS/MS proteomic analysis, thus establishing the proof-of-concept for true single-cell proteomic analysis. Dehydrin (ERD14_ARATH), two myrosinases (BGL37_ARATH and BGL38_ARATH), annexin (ANXD1_ARATH), vegetative storage proteins (VSP1_ARATH and VSP2_ARATH) and four proteins belonging to the S-adenosyl-l-methionine cycle (METE_ARATH, SAHH1_ARATH, METK4_ARATH and METK1/3_ARATH) with associated adenosine kinase (ADK1_ARATH), were amongst the proteins identified in these single-S-cell samples. Comparison of the functional groups of proteins identified in S-cells with epidermal/cortical cells and whole tissue provided a unique insight into the metabolism of S-cells. We conclude that S-cells are metabolically active and contain the machinery for de novo biosynthesis of methionine, a precursor for the most abundant glucosinolate glucoraphanine in these cells. Moreover, since abundant TGG2 and TGG1 peptides were consistently found in single-S-cell samples, previously shown to have high amounts of glucosinolates, we suggest that both myrosinases and glucosinolates can be localised in the same cells, but in separate subcellular compartments. The complex membrane structure of S-cells was reflected by the presence of a number of proteins involved in membrane maintenance and cellular organisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant cell growth and stress signaling require Ca2+ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH_. In root cells, extracellular OH_ activates a plasma membrane Ca2+-permeable conductance that permits Ca2+ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca2+-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH_-activated Ca2+- and K+-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca2+ in response to OH_. An OH_-activated Ca2+ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca2+-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca2+ in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucosinolates are multi-functional plant secondary metabolites which play a vital role in plant defence and are, as dietary compounds, important to human health and livestock well-being. Knowledge of the tissue-specific regulation of their biosynthesis and accumulation is essential for plant breeding programs. Here, we report that in Arabidopsis thaliana, glucosinolates are accumulated differentially in specific cells of reproductive organs. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI), distribution patterns of three selected compounds, 4-methylsulfinylbutyl (glucoraphanin), indol-3-ylmethyl (glucobrassicin), and 4-benzoyloxybutyl glucosinolates, were mapped in the tissues of whole flower buds, sepals and siliques. The results show that tissue localization patterns of aliphatic glucosinolate glucoraphanin and 4-benzoyloxybutyl glucosinolate were similar, but indole glucosinolate glucobrassicin had different localisation, indicating a possible difference in function. The high resolution images obtained by a complementary approach, cryo-SEM Energy Dispersive X-ray analysis (cryo-SEM-EDX), confirmed increased concentration of sulphur in areas with elevated amounts of glucosinolates, and allowed identifying the cell types implicated in accumulation of glucosinolates. High concentration of sulphur was found in S-cells adjacent to the phloem in pedicels and siliques, indicating the presence of glucosinolates. Moreover, both MALDI MSI and cryo-SEM-EDX analyses indicated accumulation of glucosinolates in cells on the outer surface of the sepals, suggesting that a layer of glucosinolate-accumulating epidermal cells protects the whole of the developing flower, in addition to the S-cells, which protect the phloem. This research demonstrates the high potential of MALDI MSI for understanding the cell-specific compartmentation of plant metabolites and its regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.